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Fig. 8. The strength of a noise current source in (pA)2/Hz and a noise voltage
source in (nV)Z/Hz as extracted from measured data in H-parameter format.
Parasitic elements and Cdg and Rgs shown in Fig. 5 have been de-embedded.
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Fig. 9. The correlation coefficient between the noise current source and the
noise voltage source shown in Fig. 8 as extracted from measured data.

in Figs. 3 and 4. Quite good agreement is observed. Several other
HEMTs have been analyzed and modeled with similar results.

V. CONCLUSIONS

Aprocedtrre for noise source extraction from measured data was
presented. Experimental data from a low-noise HEMT device showed
little correlation between input and output noise when the noise
sources were extracted in If-parameter format forcing open-circuit
conditions at the gate and short-circuit conditions at the drain. The
experimental data show that an accurate HEMT noise model may be
constructed using non-correlated noise sources.

ACKNOWLEDGMENT

The author wishes to thank Dr. Paul Saunier for device fabrication

and Mr. Mark A. Walker for noise parameter measurements.

[1]

[2]

[3]

[4]

REFERENCES

H. A. Haus (Chairman), “Representationo fnoise in linear two-ports,”
F’r-oc H?E. vol. 48, pp. 69–74, Jan. 1960.
H. Rothe and W. Dahlke, ’’Theory ofnoisy fourpoles,’’ ProIZW,W, vol.
44, pp.811-818, June 1956.
A. Riddle, “Extraction of FET model noise-parameters from measure-
merit,'' in19911EEE M~-SIttt. Microwat'e Symp. Dig., pp. 1113–1116.
Circuit simulator software available from EEsof, Inc., Westlake Village,
CA 91362.

[5]

[6]

[7]

G. Dambrini et al., “A new method for determining the FET small-
signal equivalent circuit, '' IEEE Microwave Theo~ Tech,, vol. 36, no.
7, pp. 1151-1159, July 1988.
R. A. Pucel, H. A. Haus, and H. Statz, “Signal and noise properi.ies
of gallium arsenide microwave field-effect transistors,” in Ao!varrces in
Electronics and Electron Physics, vol. 38, L. Morton, Ed., New Yclrk
Academic Press, 1975.
M. W. Pospieszalski, “Modeling of noise parameters of MESFET’S and
MODFET’S and their frequency and temperature dependence,” IEEE
Trans Micr-owave Theory Tech., vol. 37, pp. 1340-1350, Sept. 1989.

An Efficient Method for the Determination
of Resonant Frequencies of Shielded
Circular Disk and Ring Resonators

Faton Tefiku and Eikichi Yamashita

Abstract— This short paper describes an efficient method for lhe
determination of resonant frequencies of shielded circular disks and
annnlar ring resonators. Bounary integral equations are set up based
on the Green>s identity in the circular cytindrieal coordinates, and are
numerically solved by dtscretizing common boundary integral paths. The
overall integration path is considerably shortened to reduce computation
time by using simple eigen functions satisfying regular homogeneous
boundary conditions as weighting functions instead of using Green’s
functions. Computational results for both circular disks and annular rings
are presented and compared with other available numerical results for
some cases. This method can be extended to treat thick conductors.

I. INTRODUCTION

Circular disks and annular ring conductors printed on a dielectric
substrate are finding a wide range of applications in microwave
integrated circuits. Various simple models have been employed in the
past to estimate the resonant frequencies of these structures: a simple
cavity model with magnetic side walls [1], [2], a modhled cavity
model [3], a planar waveguide model [4] [5] taking into account

fringe fields for both circular disk and annular ring resonators. A more
rigorous method was developed for an annular ring using the reaction
concept [6]. With a full wave analysis in the Hankel transform
domain it was possible to estimate both resonant frequencies and
radiation patterns [7], [8]. Calculations have also been made under
the assumption of a conductive shielding in the case of resonator
structures with high dielectric permittivities or thin substrates U9],
[10].

The boundary integral equation method without using Green’s
function has been proposed [11] and has recently been employed in
the analysis of planar transmission lines [12]. It is one of the features
of the method that eigen functions satisfying the regular boundmy
conditions of the shielding conductor are used instead of Green’s
function. The manipulation with complicated Green’s functions is
avoided in this way and the overall integration path is considerably
shortened for saving the computational time.

In this short paper, we develop the above boundary integral
equation method in the circular cylindrical coordinates to solve
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Fig. 1. Cross-sectionof a circular resonator structure

subject problems. Resonant frequencies for various dimensions of
circular disks and annular rings are calculated and compared with
presently available data.

II. BOUNDARYINTEGRALEQUATIONMETHOD

The structure to be analyzed consists of a circular ring resonator
printed on a dielectric substrate enclosed in a cylindrical metallic box
whose cross-section and dimensions are shown in Fig. 1. A hybrid-
mode analysis is necessary for this inhomogeneous structure which

is divided into two homogeneous subregions.
In formulating the boundary integral equation, the z components

of the electromagnetic fields are chosen as unknown wave functions

satisfying the Helmholtz equations. Simple eigen functions satisfying
the same wave equation are selected as weighting functions. Then,
the following equations can be derived from the Green’s identity for
the axial components, E, and H., in each homogeneous region:

(la)

(lb)

where Qe and !lZhdenote the eigen function of the E type and H type,

respectively, and the azimuthal dependence of the electromagnetic

field is assumed as e’%+.
Eigen functions, V e and ‘1h, as the general solutions of the wave

equation in the circular cylindrical coordinates in each homogeneous
region are obtained by the method of the separation of variables.
After applying the boundary conditions on the surface of the metallic
box to the general solution, the eigen functions for the subregion 1
and subregion 2 are expressed as

w; = Jn(okp) Cos [kzl. (z + hi)] (2a)

V! = ,ln(~mp) sin [k.Ik(z + ~1)] (2b)

v; = Jn(amp) Cos [k.,e(z – hz)] (2C)

@ = J.(Dmp) sin [kzzh(~– ~z)l (2d)

where the factor e~n4 has been omitted and am and /3., are the
solutions of the equations:

J“t (CYntp)l,=a = o (rn = 1,2,..) (3a)

and

d.Jn(/7mp)
2. =0 (rn=l, z,..) (3b)

where kzle,k,lh,k.Zt?, and k.Zh are given as

‘1. =- ‘1,”- (4,

‘2 ‘G ‘,=-

and ko is the wave number for free space and J. is the nth order
Bessel function of the first kind.

By substituting the above eigen functions into (l), four boundary

integral equations can be constructed. Then, the axial components
of electromagnetic fields are expressed in term of fields tangential
totheinterface using Maxwell’s equations. The continuity condition
of tangential electromagnetic fields is applied to the air-dielectric
interface and the resonator conductor is assumed to have zero
thickness. After some manipulations with the E type and H type
equations, a set of two integral equations can be derived as fellows:

A mm
f{ }

~~(pEp)-:E+ ~n(cwnp)pci~
~d pap

+ BnmJ{ }-~&(pI,)+~I~Jn(CYmp)pdp=O (5a)
r=

c ?z?n
/{ }

–: EP+M(PE4) Jn(fLnP)P~P
r~ p ap

+ D.m
/{ }

%-:$ (Ph) ~n(/kP)P~P=O (Sb)
r= P

where EP and E@ arethetangential components of the electric field
on the air-dielectric interface, and 10 = HOI – H+, and I+ =
HPZ –Hpl are the two components of the surface current density

on the circular resonator. rd denotes the air-dielectric interface and
17C the conductor surface of the resonator in the cross section.

The boundary integrals on the conductor enclosure part disappear

because of the nature of the eigen functions satisfying the boundary
conditions. The factors, A.m, B.m, C.m and D.m, are defined as

A-tin =E. cos(k.l. hl)k.z, sin(k.z. hz)

+ cos (kzz.hz)kzl, sin (kzl~hl) (6a)

B ~m = kzle sin (kzlehl)kzze sin (kzzchz) (6b)

c nm = k,lk cos (k.lhhl) sin (k.z~hz)

For numerical processing, the above boundary integral paths are

divided into ihf(~=Nd+N.) finite segments, where Nd andiV.
denote the number of segments on the rd and I’. path, respectively.
The components of the electric field and the current density are
considered as unknown constants at each segment of the discretized
boundary integral paths. When the number of the eigen functions is
selected to be equal to the number of divided segments, M, a set of
homogeneous linear equations can be obtained from (5), in a matrix
form as

[E,]

[ 1:][ae][be][c’][de][JZl =[()]
[~hl [~hl [c! [dhl [Ipl (7)

[1,/,]

The coefficients of the sub-matrices are given as a product of the
factors in(6) andthesolutions ofoneof the integrals below



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 41, N0.2, FEBRUARY 1993 345

4.0, I I I I I I

zQ 3,0

“If

EHZIO
~ Td= 3.ocm
z I+ =2.32
@> hl = 1.56mm
g 2.0
~

EHIIO

t I

1.OJ I i I I I
20 40 -60

NUMBER OF INTEGRAL PATH

DISCRETIZATIONS, M

Fig. 2. Convergence of first three resonant frequencies for a circu-
lar dkk resonator against the number of integral pattr discretization,
Al, (hz = 15hl, a = 6.0 cm).

where pj – pj – 1 is the width of the jth segment and ~, takes values

cu or ~,, for the E type or H type equations, respectively.
Non-trivial solutions of (7) exist if its determinant vanishes, Then,

kO corresponding to the resonant frequencies of the structure can be

determined.

III. NUMERICALRESULTS

In general, the zeros of tlte determinant of (7) represent resonant

frequencies of the whole structure, that is, the shielded circular res-
onator. However, the proper choice of dimensions of shielding walls
results in solutions close to those of an open resonator structure, or

dktorted fields of the modes of a partially dielectric filled cylindrical
cavity. We follow the same rule as one given in [10], where the
dimensions of the shielding walls were chosen so as to produce
no strong mutual coupling between cavity modes and disk and ring
modes for the same order, n. In other words, the effect of the shieldlng
walls can be neglected if hz and a are large enough and the above
resonance positions are avoided.

The resonant frequencies of the partially dielectric filled cylindrical
cavity can be easily calculated as shown below. Removing the circular
conductor from the interface, the second part of (5) disappears. The
procedure to find cavity mode resonances is simplified as one to find

zeros of the following equations:

A –on?n — (9a)

c –onm — (9b)

The solutions of (9a) and (9b) are used to predict the resonance
frequencies of the distorted fields of the modes of the partially
dielectric filled cylindrical cavity and to determine proper dimensions
of the shieldhtg walls.

Fig. 2 shows the convergence properties of resonant frequencies
for the dominant mode and two higher order modes of a circular disk

against the total number of segments, M. The dimensions of the disk
resonator are ~1 = O,m = rd = 3.O cm, hl = 1.56 mm, c, = 2.32,
and those of the shielding walls are hz = 15h 1,a = 6.0 cm. It is
found that taking M = 40 in total ensures computation errors of less

than 0.5 percent. The typical computation time is about 20 seconds
for one resonant frequency on a Sun 4 workstation, where about ten
iterations are performed for convergence with a good first guess.

Fig. 3 shows the first three resonant frequencies of the circular disk
as the function of the disk radius, r-d, with parameters of e, = 2.32

I I
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Fig. 4. Resonant frequencies of a circular ring resonator (hz = 151z1, a =
7.0 cm).

and lzl = 1.56 mm. The shielding height is fixed as Im = 15h1,

and the shielding radius takes values of a = 3 N 7 cm in order to

avoid the mutual coupling. The case rd = 3.0 cm is the same as

those studied in [9]. The difference less than 1 percent between our
numerical resuks and those given in [9] is found for all the three

modes.
The resonant frequencies of circular rings were also investigated.

Fig. 4 shows the first three resonant frequencies of a circular ring
versus the inner radius, r 1, with parameters of rz = 4.0 cm,

~, = 2.32 and hl = 1.56 mm. The dimensions of the shielding

enclosure are hz = 15h 1 and a = 7.0 cm. Good agreement with
the numerical result of [9] is found again for two particular cases,

rl = 0.5 cm and T1 = 2.0 cm. This fact seems to confirm ithe
exactness of these two methods.

Some numerical computations were also performed for comparison

with the planar waveguide model with frequency dependent effecl ive

parameters [5]. In general, good agreement was found as long as
the circular conductor occupies a considerable portion of the integ,ral
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path. However, whenu =Tz–r’l isdecreased, stray fields around the
circular conductor are increased and the influence of the shielding is
significant even without strong coupling between circular ring modes

and cavity modes. These phenomena must be taken into account in
the computation if a resonator has to be completely enclosed with a
shielding housing.

For the case of open structures, better approximations can be

achieved using thin substrates and high dielectric permittivities.
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Design Analysis of Novel Coupling
Structures for Multilayer MMIC’S

Matthew Gillick, Ian D. Robertson, and Jai S. Joshi

Abstract—Novel monolithic multilayered coupling structures are pre-
sented and their performances analyzed. These structures have rednced
current crowding at their conductor edges compared to coplanar type
conpling structures, and are particularly suitable for integration with
multi-dielectric MMIC’S. This paper presents the closed-form analytical
expressions for the conpler’s even and odd mode impedances and coupling
coefficients derived using conformal mapping techniques. These direct
formulas have the advantage of being well suited for the computer
aided design analysis of MMIC’S without the need for lengthy numerical
modelling techniques.

I. INTRODUCTION

Multilayer MMIC’S have recently been receiving widespread atten-

tion [1]–[3]. Various small size novel coupling structures incorporat-

ingmtdti-dielectric layers have been proposed and analyzed [4]–[7].

This paper presents a new multilayer homogeneous coupling structure

which offers reduced current crowding atthe conductor edges, and is

particularly suitable for integration with coplanar waveguide, slot line,

and microstrip transmission lines. By having the transmission lines

perpendicular totheground plane(s), asshown in Fig. l,the level of

current crowding at the conductor edges may be reduced compared

tocoplanar type structures [8]. This isevident since the electric field

distribution across two conductor surfaces is more uniform for a

given conductor spacing when they are perpendicular, than when they

are within the same plane. The fabrication of these couplers could

be realized using newly developed multilayer MMIC technologies.

A combination of successive wet etching, reactive ion etching or

plasma etching of multi-dielectric layers could be used to fabricate a

channel-shaped cut out, whereby perpendicular strip conductors may

be realized.

II. ANALYSIS OF THE COUPLING STRUCTURES

The proposed coupling structures are illustrated in Fig. 1, where

2h is the total substrate thickness, 2s is the spacing between the

coupled lines, and 2W is the gap width in the center ground plane.
Structure B, has two additional ground shielding parallel to the

center ground p~ane, placed at a distance h —T from each conductor
strip. Throughout these multilayer structures, the dielectric substrate
has a constant relative permitivity, :,. Shown in Fig. 2, is an example
of the variation between the even and odd-mode electric field lines
of structure A.

The following quasi-static analysis employs a sequence of confor-
mal mappings to evaluate the even and odd mode capacitances of
the couplers. The analytical approach used here isolates the even and
odd modes in order to evaluate their impedances and subsequently

the structure’s coupling factors. For both structures the metallic
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